Left Termination of the query pattern f_in_1(g) w.r.t. the given Prolog program could successfully be proven:



Prolog
  ↳ PrologToPiTRSProof

Clauses:

f(X) :- g(s(s(s(X)))).
f(s(X)) :- f(X).
g(s(s(s(s(X))))) :- f(X).

Queries:

f(g).

We use the technique of [30].Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

f_in(s(X)) → U2(X, f_in(X))
f_in(X) → U1(X, g_in(s(s(s(X)))))
g_in(s(s(s(s(X))))) → U3(X, f_in(X))
U3(X, f_out(X)) → g_out(s(s(s(s(X)))))
U1(X, g_out(s(s(s(X))))) → f_out(X)
U2(X, f_out(X)) → f_out(s(X))

The argument filtering Pi contains the following mapping:
f_in(x1)  =  f_in(x1)
s(x1)  =  s(x1)
U2(x1, x2)  =  U2(x2)
U1(x1, x2)  =  U1(x2)
g_in(x1)  =  g_in(x1)
U3(x1, x2)  =  U3(x2)
f_out(x1)  =  f_out
g_out(x1)  =  g_out

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog



↳ Prolog
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

f_in(s(X)) → U2(X, f_in(X))
f_in(X) → U1(X, g_in(s(s(s(X)))))
g_in(s(s(s(s(X))))) → U3(X, f_in(X))
U3(X, f_out(X)) → g_out(s(s(s(s(X)))))
U1(X, g_out(s(s(s(X))))) → f_out(X)
U2(X, f_out(X)) → f_out(s(X))

The argument filtering Pi contains the following mapping:
f_in(x1)  =  f_in(x1)
s(x1)  =  s(x1)
U2(x1, x2)  =  U2(x2)
U1(x1, x2)  =  U1(x2)
g_in(x1)  =  g_in(x1)
U3(x1, x2)  =  U3(x2)
f_out(x1)  =  f_out
g_out(x1)  =  g_out


Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

F_IN(s(X)) → U21(X, f_in(X))
F_IN(s(X)) → F_IN(X)
F_IN(X) → U11(X, g_in(s(s(s(X)))))
F_IN(X) → G_IN(s(s(s(X))))
G_IN(s(s(s(s(X))))) → U31(X, f_in(X))
G_IN(s(s(s(s(X))))) → F_IN(X)

The TRS R consists of the following rules:

f_in(s(X)) → U2(X, f_in(X))
f_in(X) → U1(X, g_in(s(s(s(X)))))
g_in(s(s(s(s(X))))) → U3(X, f_in(X))
U3(X, f_out(X)) → g_out(s(s(s(s(X)))))
U1(X, g_out(s(s(s(X))))) → f_out(X)
U2(X, f_out(X)) → f_out(s(X))

The argument filtering Pi contains the following mapping:
f_in(x1)  =  f_in(x1)
s(x1)  =  s(x1)
U2(x1, x2)  =  U2(x2)
U1(x1, x2)  =  U1(x2)
g_in(x1)  =  g_in(x1)
U3(x1, x2)  =  U3(x2)
f_out(x1)  =  f_out
g_out(x1)  =  g_out
G_IN(x1)  =  G_IN(x1)
U11(x1, x2)  =  U11(x2)
U31(x1, x2)  =  U31(x2)
U21(x1, x2)  =  U21(x2)
F_IN(x1)  =  F_IN(x1)

We have to consider all (P,R,Pi)-chains

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

F_IN(s(X)) → U21(X, f_in(X))
F_IN(s(X)) → F_IN(X)
F_IN(X) → U11(X, g_in(s(s(s(X)))))
F_IN(X) → G_IN(s(s(s(X))))
G_IN(s(s(s(s(X))))) → U31(X, f_in(X))
G_IN(s(s(s(s(X))))) → F_IN(X)

The TRS R consists of the following rules:

f_in(s(X)) → U2(X, f_in(X))
f_in(X) → U1(X, g_in(s(s(s(X)))))
g_in(s(s(s(s(X))))) → U3(X, f_in(X))
U3(X, f_out(X)) → g_out(s(s(s(s(X)))))
U1(X, g_out(s(s(s(X))))) → f_out(X)
U2(X, f_out(X)) → f_out(s(X))

The argument filtering Pi contains the following mapping:
f_in(x1)  =  f_in(x1)
s(x1)  =  s(x1)
U2(x1, x2)  =  U2(x2)
U1(x1, x2)  =  U1(x2)
g_in(x1)  =  g_in(x1)
U3(x1, x2)  =  U3(x2)
f_out(x1)  =  f_out
g_out(x1)  =  g_out
G_IN(x1)  =  G_IN(x1)
U11(x1, x2)  =  U11(x2)
U31(x1, x2)  =  U31(x2)
U21(x1, x2)  =  U21(x2)
F_IN(x1)  =  F_IN(x1)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 1 SCC with 3 less nodes.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
PiDP
              ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

F_IN(X) → G_IN(s(s(s(X))))
F_IN(s(X)) → F_IN(X)
G_IN(s(s(s(s(X))))) → F_IN(X)

The TRS R consists of the following rules:

f_in(s(X)) → U2(X, f_in(X))
f_in(X) → U1(X, g_in(s(s(s(X)))))
g_in(s(s(s(s(X))))) → U3(X, f_in(X))
U3(X, f_out(X)) → g_out(s(s(s(s(X)))))
U1(X, g_out(s(s(s(X))))) → f_out(X)
U2(X, f_out(X)) → f_out(s(X))

The argument filtering Pi contains the following mapping:
f_in(x1)  =  f_in(x1)
s(x1)  =  s(x1)
U2(x1, x2)  =  U2(x2)
U1(x1, x2)  =  U1(x2)
g_in(x1)  =  g_in(x1)
U3(x1, x2)  =  U3(x2)
f_out(x1)  =  f_out
g_out(x1)  =  g_out
G_IN(x1)  =  G_IN(x1)
F_IN(x1)  =  F_IN(x1)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
PiDP
                  ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

F_IN(X) → G_IN(s(s(s(X))))
F_IN(s(X)) → F_IN(X)
G_IN(s(s(s(s(X))))) → F_IN(X)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
                ↳ PiDP
                  ↳ PiDPToQDPProof
QDP
                      ↳ RFCMatchBoundsDPProof

Q DP problem:
The TRS P consists of the following rules:

F_IN(X) → G_IN(s(s(s(X))))
F_IN(s(X)) → F_IN(X)
G_IN(s(s(s(s(X))))) → F_IN(X)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
Termination of the TRS P cup R can be shown by a matchbound [6,7] of 2. This implies finiteness of the given DP problem.
The following rules (P cup R) were used to construct the certificate:

F_IN(X) → G_IN(s(s(s(X))))
F_IN(s(X)) → F_IN(X)
G_IN(s(s(s(s(X))))) → F_IN(X)

The certificate found is represented by the following graph.

The certificate consists of the following enumerated nodes:

54, 55, 58, 57, 56, 59, 61, 60, 62, 64, 63

Node 54 is start node and node 55 is final node.

Those nodes are connect through the following edges: